Glucagon

Beta blockers and calcium channel blockers are commonly used in the treatment of cardiovascular diseases. Though they are two separate classes of drugs, both beta blocker and calcium channel blocker poisonings present with hypotension, bradycardia, heart block, and myocardial depression. Furthermore, noncardiovascular manifestations of toxicity may include change of mental status, seizures, hyperglycemia (with calcium channel blockers) or hypoglycemia (with beta blockers), and respiratory depression.

Mechanism/Indications: Beta blocker and calcium channel blocker poisoning can be treated with glucagon, an antidote and also a regulatory hormone that stimulates glucose release. Glucagon has positive inotropic and chronotropic effects on the myocardium by increasing cAMP concentration through a non-adrenergic mechanism. Case studies have shown that it reverses hypotension, bradycardia, and myocardial depression in patients previously showing signs of toxicity. Glucagon, however, cannot reverse conduction disturbances (e.g. prolongation of QRS interval) caused by some beta blockers with membrane stabilizing activity (e.g. propranolol).

Dosing: Glucagon has a fast onset of action and short duration of effect. When given intravenously, its impact on the myocardium is seen within 1 to 3 minutes and lasts for 10 to 15 minutes. The Maryland Poison Center recommends an IV bolus of 5-10 mg (adult) or 50 mcg/kg (pediatric) over 1-5 minutes, followed by a continuous infusion of response dose per hour. Heart rate, blood pressure, ECG, blood glucose, as well as mental status would be useful to monitor the patient’s progress and efficacy of the antidote.

Adverse Effects/Contraindications: Adverse effects are primarily nausea and vomiting (up to 30% of patients), which can be minimized by giving lower doses, infusing it at a slower rate, and administering antiemetics. Other adverse effects include hyperglycemia and hypokalemia. Contraindications for glucagon include insulinoma, pheochromocytoma and hypersensitivity to any component of the product.

Availability of glucagon is a common issue since many hospitals do not have an adequate supply to provide resuscitation. Therefore, it is essential that hospitals have enough glucagon available to treat overdose patients when needed. Since high doses of glucagon are often required for treatment, we recommend hospitals to maintain a minimum of 50 mg of glucagon in stock.

Chi Tran
Student Pharmacist
University of Maryland School of Pharmacy

For more on glucagon:

February 2010 (reviewed January 2013)